在自动驾驶实际落地场景中,往往需要高密度的LiDAR才能满足感知需求,而64线以上LiDAR 成本居高不下,成为自动驾驶大规模商业化瓶颈之一。达摩院自动驾驶实验室环境感知算法能结合摄像头图像,对低线束LiDAR点云进行深度补全及语义识别,实现更稠密的激光雷达点云图3D重建效果,不仅可更精确地读取障碍物距离及形状等信息,也可更精准判断其类别信息。
在精度指标上,达摩院采用低线束激光雷达输入,实现了业内采用高线束激光雷达输入的平均水平,50米内障碍物距离信息读取平均误差为25厘米左右,同时,达摩院进行深度补全任务时可达到100fps(每秒传输帧数)的处理能力。